Variable displacement axial piston pump type V30D

for open circuit

Pressure p_{max} Displacement V_{max} = 420 bar (6000 psi) = 260 cm³/rev (16.16 cu in/rev)

1. General description

The axial piston variable displacement pumps of the type V30 of D offer extremely high function safety. Its remarkably low noise levels, the high pressure rating (peak = 420 bar / perm. = 350 bar), the low weight/performance ratio as well as the wide controller range make it possible to employ it for most industrial and mobile applications. The variable displacement pumps work according to the swash plate principal: 9 pistons operate in a rotating cylinder cavities where they fulfill one suction and one pressure stroke per rotation.

Opening and closing of the cylinder cavities is via openings in the control disc. The axial movement of the pistons is provided by an adjustable swash plate. The setting angle (0 - max) can be steplessly varied in proportion to the desired displacement/flow. The setting range can be mechanically limited by setting screws (with V and VH controller only fixed limitation is possible). The position of the swash plate can be controlled via a visual mechanical indicator.

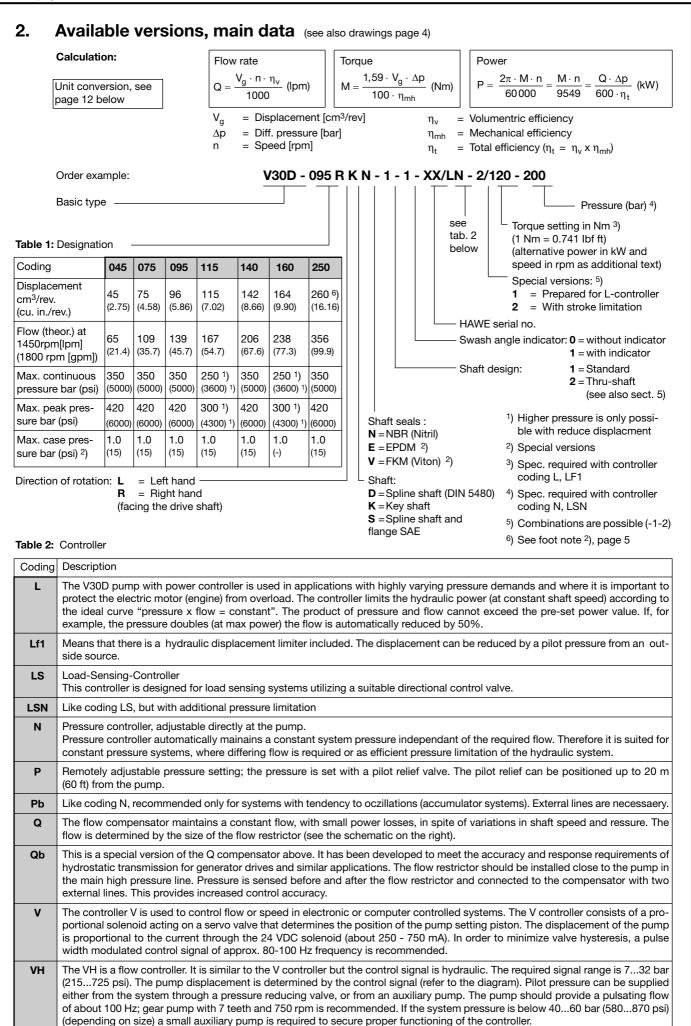
The latest knowledge and experience with regard to noise reduction has been used in the development of this pump design. V30D is therefore rather quiet, even when taken to the limit. All components used in the V30D are manufactured from high grade materials and machined with close tolerances.

The wide range of modular controllers along with a thru-shaft (option for mounting auxiliary pumps or a second V30D) open up a wide range of application possibilities.

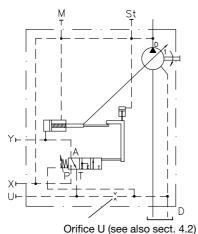
Therefore type V30D features a pump design, which ideally suits the special requirements of modern industrial and mobile hydraulic drive systems

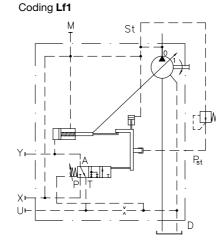
Outstanding design features:

- Low specific weight
- · Very fast response times due to low mass moment of inertia of the setting unit
- · Special swash plate bearing helps reduce noise
- New design of the hydrostatically balanced steel slipper shoes running on a bronze plate improves the life of typical wearing parts
- Valve plate made from steel provides high wear resistance. Carefully designed dampening slots result in exceptionally low noise level
- Large shaft bearings provide long life


The most important advantages :

- · Low noise level, whereby secondary measures to reduce noise often are not necessary
- Controller assemblies have been designed on a modular basis and can be installed without dismantling the basic pump
- Thru- shaft allows tandem pump combinations and mounting of auxiliary pumps of all kinds (see sect. 5)
- Swash plate dial indicator provides visual indication of displacement and can also be used to provide feedback information in control systems


HAWE HYDRAULIK GMBH & CO. KG STREITFELDSTR. 25 • 81673 MÜNCHEN In/ine


D 7960 page 2

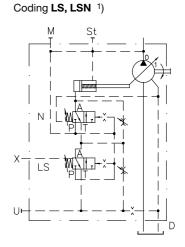
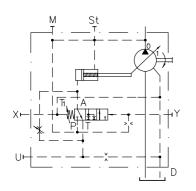
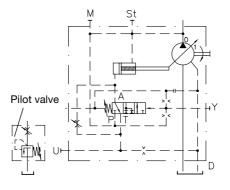


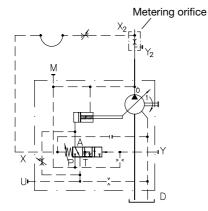
Table 3: Flow pattern

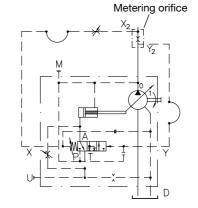

$\mathsf{Coding}\, \mathbf{L}$

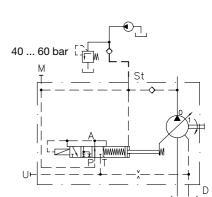


Coding N

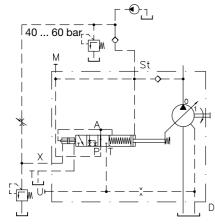
Coding P


Coding **Qb**

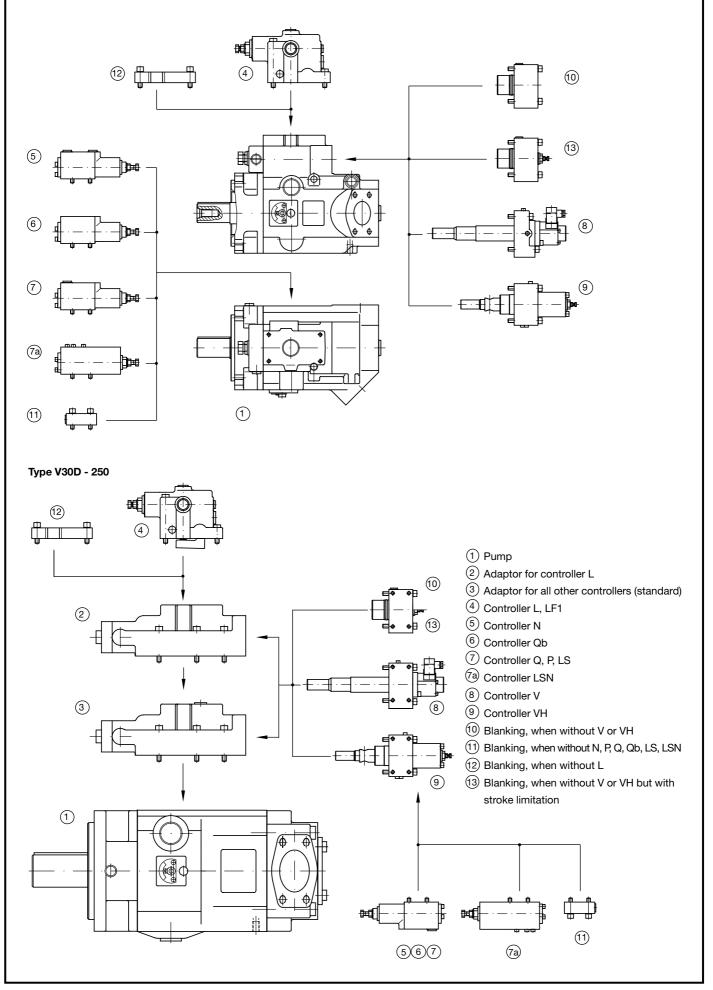

М


Coding Pb

 $\mathsf{Coding}\, \mathbf{V}$


Coding **Q**

Coding VH


 The pressure limiting valve "N" is not available with type LS (version without pressure cut-off)

D 7960 page 3

Illustration controller range

Type V30D - 045 (075; 140; 160)

(For position of controller for pumps type V30D-095 (115), see page 11!)

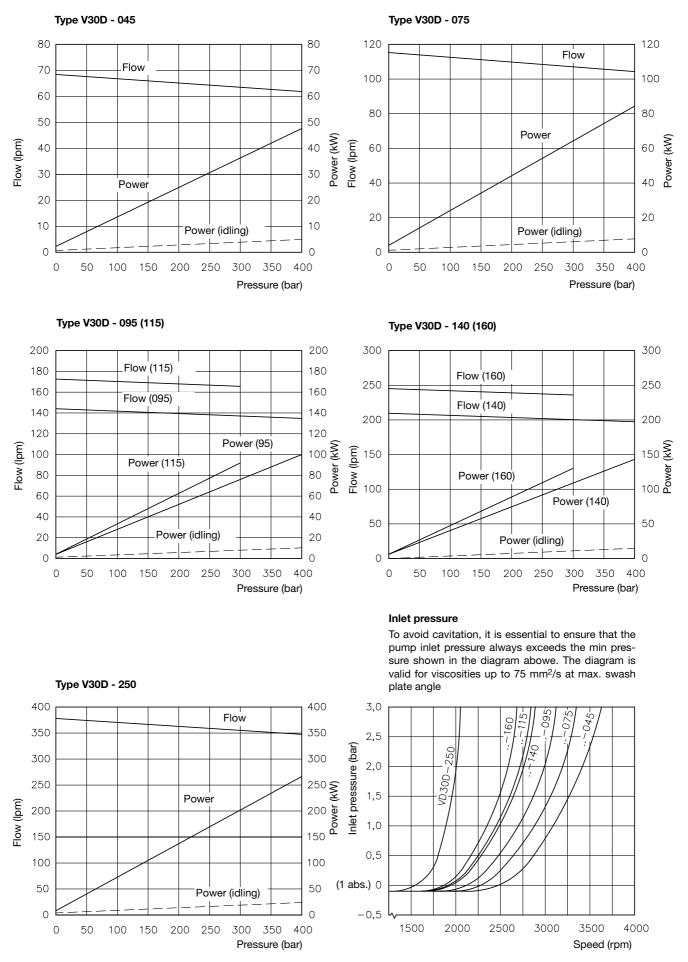
3. Additional versions

3.1 General

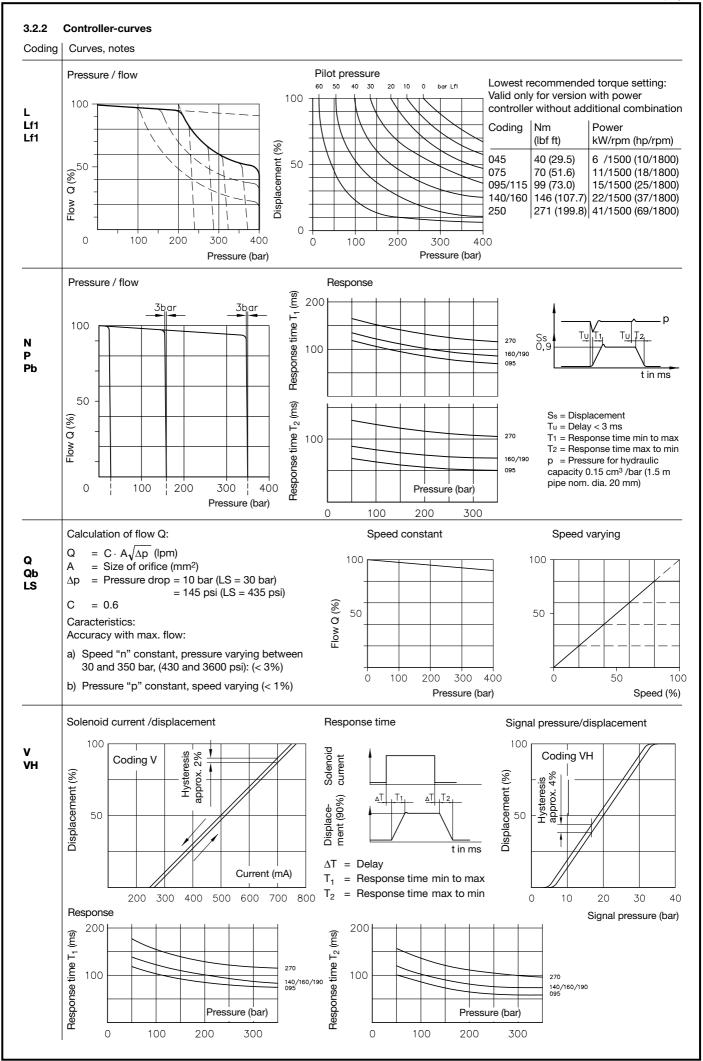
Working principle	Variable displacement axial piston pump acc. to swash plate principle
Installation	Flange or brachet mounting
Direction of rotation	Right hand or left hand
Mounting position	Optional
Pressure fluid	Hydraulic fluid (DIN 51524 table 2 and 3); ISO VG 10 to 68 (DIN 51519) Viscosity range: min. 10; max. 1000 mm ² /s, optimal operation range: 1035 mm ² /s Also suitable are biodegradable pressure fluids of the type HEES (synth. Ester) at operation temperatures up to +70°C.
Temperatur	Ambient: -40 +60°C Fluid: -25+80°C, pay attention to the viscosity range! Start temperature down to -40°C are allowable (Pay attention to the viscosity range during start!), as long as the operation temperature during consequent running is at least 20K (Kelvin) higher.
Filtration	Should conform to ISO standard 4406 coding 18/13.
Start-up	All hydraulic lines should be flushed with appropriate hydraulic fluid before start-up. The pump case should then be titled through the uppermost drain port. The drain line must be positioned so that the case is always filled during operation. At start-up and during the first few minutes of the operation the pressure relief valve should be adjusted to 50 bar (700 psi) or less.

Designation		045	075	095	115	140	160	250
Max. swash plate angle	[°]	17	17.5	17	20	17.5	20	17.5
Min. inlet pressure (absolute), open circuit	bar (psi)	0.85 12	0.85 12	0.85 12	0.85 12	0.85 12	0.85 12	0.85 12
Self-priming speed at max swash plate angle and 1 bar (1 absolute inlet pressure	rpm I5 psi)	2600	2400	2200	2000	2200	1900	1800 ²)
Max. speed (requires increased inlet press	rpm ure)	3600	3200	2900	2800	2600	2500	2000
Min. continuous speed	rpm	500	500	500	500	500	500	500
Torque (theor.) at 1000 psi	Nm (Ibf ft)	71 35	119 61	153 78	185 93	226 115	261 132	414 203
Input power at 250 bar and 14 at 3000 psiand 1800 rpm	50rpm kW (hp)	30 41	50 68	64 87	77 105	95 129	109 148	174 237
Weight (approx. kg) w (approx. lbs)	vithout controller	40 88	60 132	70 154	70 154	85 187	85 187	130 287
(approx. kg) (approx. lbs)	with controller	46 101	66 145	76 168	76 168	91 201	91 201	136 300
Moment of inertia	kg m² (ft. lbs. sec²)	0.0056 0.0041	0.0124 0.0092	0.0216 0.016	0.0216 0.016	0.03 0.022	0.03 0.022	0.0825 0.061
L10 bearing life at 250bar (145 or 3600 psi (1800 rpm) and max. displacement	50 rpm) (h) (h)	31000 25000	20000 16000	17000 14000	10000 8000	17000 14000	10000 8000	23000 19000
Max. dynamic torque								
Spline shaft (D)	input Nm (Ibf ft)	550 405	910 670	1200 885	1200 885	1700 1250	1700	3100 2285
Spline shaft (D)	output Nm (lbf ft)	275 205	455 333	600 445	600 445	850 625	850	1550 1145
Key shaft (K)	input Nm (Ibf ft)	280 205	460 340	650 480	650 480	850 630	850 630	1550 1145
Spline shaft (S)	input Nm (Ibf ft)	500 370	500 370	1200 885	1200 885	1200 885	1200 885	1200 885
Spline shaft (S)	output ¹) Nm (lbf ft)	275 205	455 335	600 445	600 445	850 625	850 625	1000 740
Noise level at 250 bar and (145 or 3600 psi and max. (1800 rpi displacement (measured in a s anechoic room according to IS measuring distance 1m)	72 75	74 78	75 79	75 79	76 80	76 80	77 82	

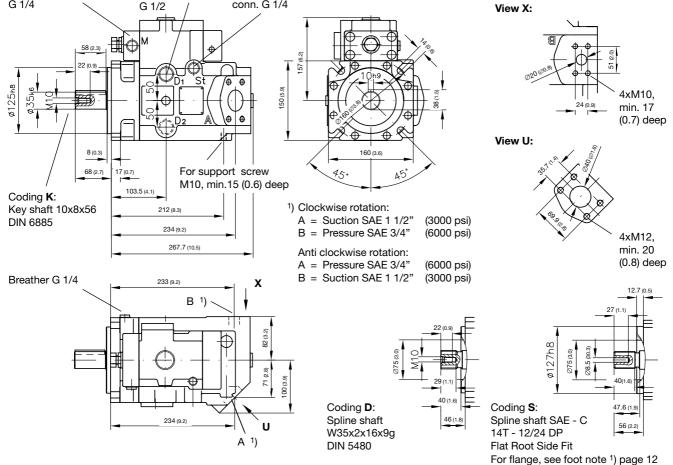
1) (theoretical) Drive torque must not be exceeded

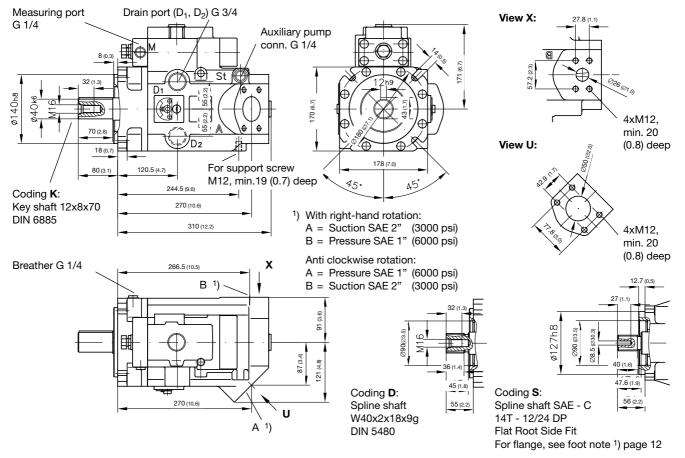

²) The max. geometric displacement of 260 cm³/rev can only be achieved up to a self sucking speed of 1600 rpm

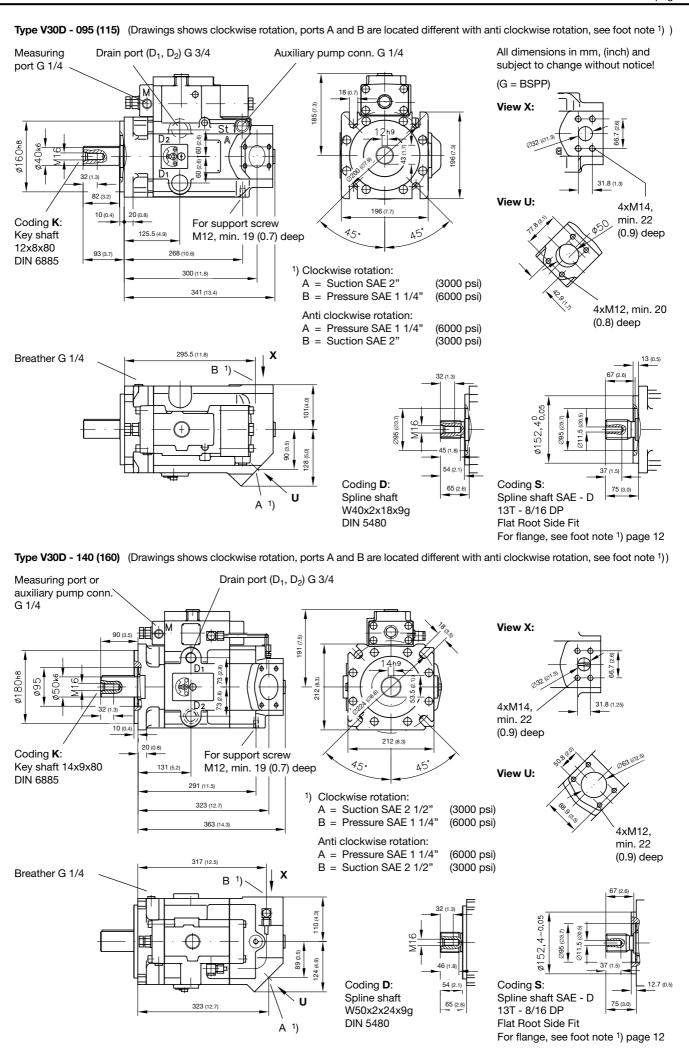
3.2 Curves

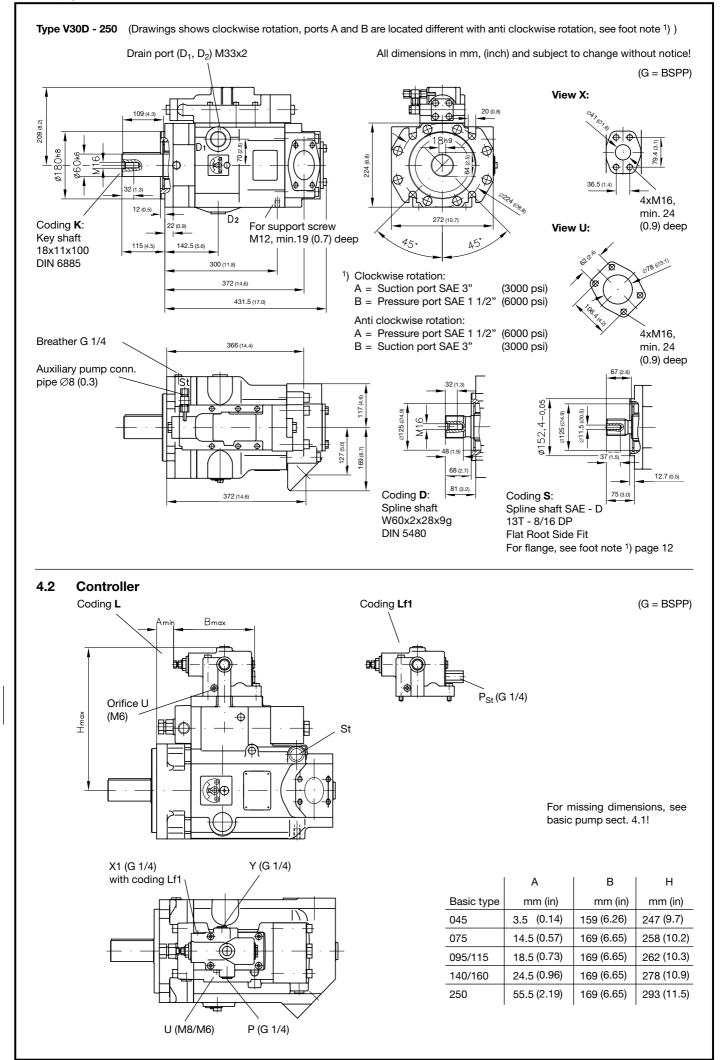

3.2.1 Flow and Power (basic pump)

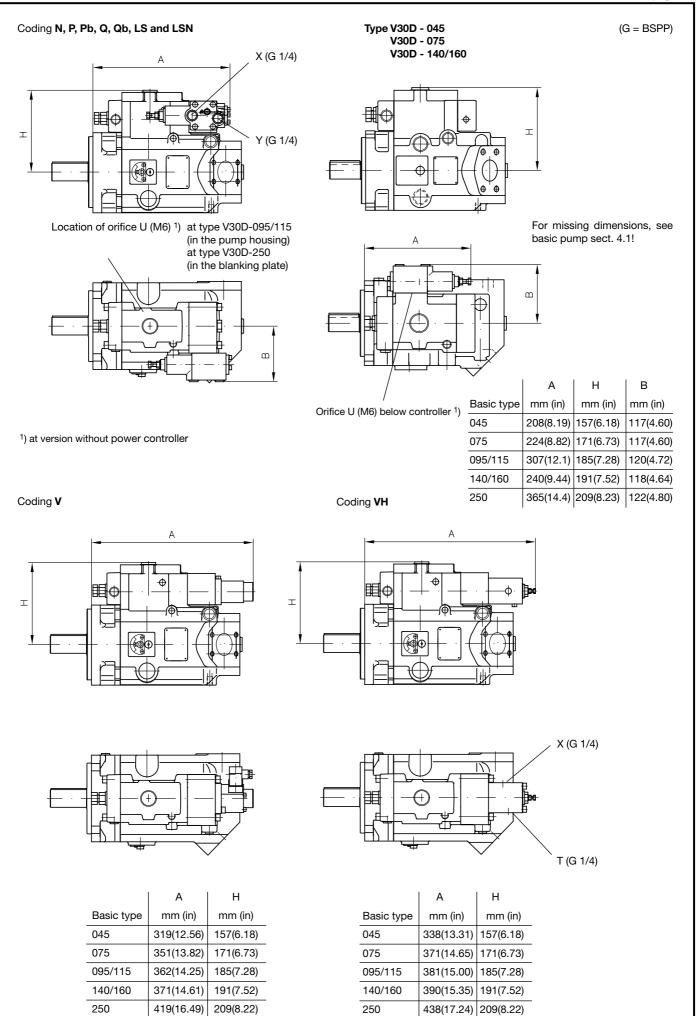
The folloving diagrams show max. delivered flow vs. pressure (without controller).


Required input power at max. swash angle and required input power when the pump is operating at "idling". Shaft speed: 1450 rpm



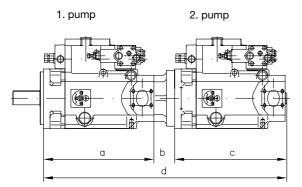

4. **Unit dimensions** All dimensions in mm, (inch) and subject to change without notice! 4.1 **Basic pump** Type V30D - 045 (Drawings shows clockwise rotation, ports A and B are located different with anti clockwise rotation, see foot note 1)) Drain port (D₁, D₂) Auxiliary pump Measuring port G 1/4 conn. G 1/4 G 1/2 View X:

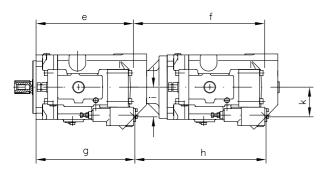



(G = BSPP)

Type V30D - 075 (Drawings shows clockwise rotation, ports A and B are located different with anti clockwise rotation, see foot note 1))

For missing dimensions, see basic pump sect. 4.1!


5. **Tandem pumps**


Two variable displacement axial piston pumps can be linked via an intermediate flange. Available are shaft design "D" and "S" Same controller range as for individual pumps.

Order example:

V30D - 140 RKN-2-1-XX/LLSN -2/120 - 200 - V30D - 140 RKN-1-1-XX/LLSN -2/120 - 200 (1. pump) (2. pump)

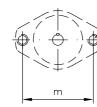
(For type coding key, see sect. 2)

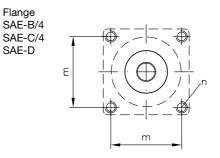
1. pump	V30D-045									
2. pump	а	b	С	d	е	f	g	h	i	k
V30D-045	263	62	268	593	233	325	234	325	71	71
				V30I	D-075	5				
	а	b	с	d	е	f	g	h	i	k
V30D-045	305	63	268	636	267	334	270	332	87	71
V30D-075	305	63	310	678	267	368	270	368	87	87
			-	V30I	D-140) (160))			
	а	b	с	d	е	f	g	h	i	k
V30D-045	358	63	268	689	317	337	323	332	89	71
V30D-075	358	63	310	731	317	371	323	368	89	87
V30D-095 (115)	358	63	341	762	317	400	323	398	89	90
V30D-140 (160)	358	84	363	805	317	442	323	442	89	89
	V30D-095 (115)									
	а	b	с	d	е	f	g	h	i	k
V30D-045	336	63	268	667	296	336	300	333	90	71
V30D-075	336	63	310	709	296	369	300	369	90	87
V30D-095 (115)	336	63	341	740	296	399	300	399	90	90
	V30D-250									
	а	b	с	d	е	f	g	h	i	k
V30D-045	415	60	268	743	366	342	372	337	127	71
V30D-075	415	60	310	785	366	376	372	373	127	87
V30D-095 (115)	415	75	341	831	366	420	372	418	127	90
V30D-140 (160)	415	87	363	865	366	453	372	453	127	89
V30D-250	415	87	431	933	366	502	372	502	127	127

There are additionally several other combination possibilities via the SAE-flange . This enables direct connection of an auxiliary pump (e.g. gear pump).

Order example:

V30D - 140 RSN -2-1-XX/LN - 2 /120 - 200 - SAE-C/4


Combination possibilities and dimensions (dimension b acc. to above illustration)


	SAE-A	SAE-B/2	SAE-B/4	SAE-C/2	SAE-C/4	SAE-D
		OAL-D/2	SAL-D/4	0AL-0/2	5AL-0/4	JAL-D
V30D - 045	36	62	62			
V30D - 075	31,5	52	52	83,5	63	
V30D - 095 (115)	24	52	52	83,5	63	73
V30D - 140 (160)	30,5	52	52	83,5	63	73
V30D - 250	38	52	52	66	66	81,5
Dimension m	106,4	146	89,8	181	114,5	161,9
n	2xM10	2xM12	4xM12	2xM16	4xM12	4xM16

SAE-D

м	Metric conversions:							
	cu in Ibf ft	=		cm ³ Nm				
1	lb in hp ft Ins s ²	=	0.454 25.4 0.745 1.3558	kW				

Flange SAE-A SAE-B/2 SAE-C/2

¹) Notes to version with shaft end coding $\, {f S} \,$ The SAE-flanges on the drive side feature thru-holes instead of threads n